Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity
نویسندگان
چکیده
We use the Cox process (or a doubly stochastic Poisson process) to model the claim arrival process for catastrophic events. The shot noise process is used for the claim intensity function within the Cox process. The Cox process with shot noise intensity is examined by piecewise deterministic Markov process theory. We apply the model to price stop-loss catastrophe reinsurance contract and catastrophe insurance derivatives. The asymptotic distribution of the claim intensity is used to derive pricing formulae for stop-loss reinsurance contract for catastrophic events and catastrophe insurance derivatives. We assume that there is an absence of arbitrage opportunities in the market to obtain the gross premium for stop-loss reinsurance contract and arbitrage-free prices for insurance derivatives. This can be achieved by using an equivalent martingale probability measure in the pricing models. The Esscher transform is used for this purpose.
منابع مشابه
Doubly Stochastic Poisson Process and the Pricing of Catastrophe Reinsurance Contract
We use a doubly stochastic Poisson process (or the Cox process) to model the claim arrival process for catastrophic events. The shot noise process is used for the claim intensity function within the Cox process. The Cox process with shot noise intensity is examined by piecewise deterministic Markov process theory. We apply the Cox process incorporating the shot noise process as its intensity to...
متن کاملKalman-bucy Filtering for Linear Systems Driven by the Cox Process with Shot Noise Intensity and Its Application to the Pricing of Reinsurance Con- Tracts
In practical situations, we observe the number of claims to an insurance portfolio but not the claim intensity. It is therefore of interest to try to solve the` ltering problem', that is to obtain the best estimate of the claim intensity on the basis of reported claims. In order to use the Kalman-Bucy lter, based on the Cox process incorporating a shot noise process as claim intensity, we need ...
متن کاملCatastrophe Insurance Modeled by Shot-Noise Processes
Shot-noise processes generalize compound Poisson processes in the following way: a jump (the shot) is followed by a decline (noise). This constitutes a useful model for insurance claims in many circumstances; claims due to natural disasters or self-exciting processes exhibit similar features. We give a general account of shot-noise processes with time-inhomogeneous drivers inspired by recent re...
متن کاملCatastrophe Insurance Modelled with Shot-noise Processes
Shot-noise processes generalize compound Poisson processes in the following way: a jump (the shot) is followed by a decline (noise). This constitues a useful model for insurance claims in many circumstances: claims due to natural catastrophes or self-exciting processes exhibit similar features. We give a general account of shotnoise processes with time-inhomogeneous drivers and derive a number ...
متن کاملProperties of Spatial Cox Process Models
Probabilistic properties of Cox processes of relevance for statistical modeling and inference are studied. Particularly, we study the most important classes of Cox processes, including log Gaussian Cox processes, shot noise Cox processes, and permanent Cox processes. We consider moment properties and point process operations such as thinning, displacements, and superpositioning. We also discuss...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Finance and Stochastics
دوره 7 شماره
صفحات -
تاریخ انتشار 2003